TL-subalgebras and TL-ideals of BCK-algebras

Shaoquan Sun, Fang He
College of Mathematics and physics, Qingdao University of Science and Technology, Qingdao, China
Email: qdsunsaoquan@163.com, hefang0001@sina.com

Abstract—In this paper, the concepts of TL-subalgebras, TL-ideals and TL-implicative ideals of BCK-algebra are introduced. A necessary and sufficient condition for a L-subset of BCK-algebra to be a L-subalgebra (ideal, implicative ideal) is stated, and images and inverse-images of TL-subalgebra under BCK-algebra homomorphism are studied. Also, several characterizations of TL-ideals (implicative ideals) are given. Where T is an arbitrary infinitely \(\vee \)-distributive t-norm on a given complete Brouwerian lattice L.

I. INTRODUCTION

A BCK-algebra is an important class of logical algebras introduced by Iséki [13] and was extensively investigated by several researchers. Zadeh [14] introduced the notion of fuzzy sets. It was first applied to the theory of groups by Rosenfeld [1]. Since then, many authors introduced fuzzy subring and fuzzy ideals [2-4], fuzzy subalgebras [5,6], and so on. Especially, the concepts of TL-subrings, TL-ideals [7,8] and T-congruence L-relations [9] were proposed, and their properties were carefully studied to a certain extent. Xi [10] applied the concept of fuzzy set to BCK-algebras. After that Jun and Meng investigated further properties of fuzzy BCK-algebras and fuzzy ideals [11,12].

In this paper, using a general infinitely \(\vee \)-distributive t-norm T on a complete Brouwerian lattice L, we shall introduce the concepts of TL-subalgebras and TL-ideals of BCK-algebras and obtain some results. Throughout this paper, unless otherwise stated, L always represents any given complete Brouwerian lattice with maximal element 1 and minimal element 0; T any given infinitely \(\vee \)-distributive t-norm on L.

II. PRELIMINARIES

Definition 2.1[7]. A binary operation T on L is called a t-norm on L if it satisfies the following conditions:
(1) \((aTb)Tc = aT(bTc) \) for all \(a,b,c \in L \);
(2) \(aTb = bTa \) for all \(a,b \in L \);
(3) \(b \leq c \Rightarrow aTb \leq aTc \) for all \(a,b,c \in L \);
(4) \(aT1 = a \) for all \(a \in L \).

A t-norm T on L is said to be \(\vee \)-distributive if
\[
 aT(b \vee c) = (aTb) \vee (aTc)
\]
for all \(a,b,c \in L \).

Infinitely \(\vee \)-distributive if
\[
 aT(\bigvee_{i \in I} b_i) = \bigvee_{i \in I} (aTb_i)
\]
for all \(a,b \in L \), \(i \in I \), where I is any nonempty index set.

By an L-subset of L, we mean a mapping from G into L. The set of all L-subsets of L is called the L-power set of L and denoted by \(L^G \).

Definition 2.2[13]. An algebraic system \((G; \ast, 0)\) of type \((2,0)\) is said to be a BCK-algebra if it satisfies: for all \(x, y, z \in G \),
\[
 (B-1) \ (x \ast y) \ast (x \ast z) = (x \ast y) \ast z = x \ast (y \ast z),
\]
\[
 (B-2) \ (x \ast (x \ast y)) = y = 0,
\]
\[
 (B-3) \ x \ast x = 0,
\]
\[
 (B-4) \ x \ast y = y \ast x = 0 \Rightarrow x = y.
\]

In a BCK-algebra G, we can define a partial ordering \(\leq \) by putting \(x \leq y \) if and only if \(x \ast y = 0 \).

Definition 2.3[10]. A subset I of a BCK-algebra G is called an ideal of G if
\[
 (I_1) \ 0 \in I;
\]
\[
 (I_2) \ \text{for any } x, y \in G, \ x \ast y \in I, \ y \in I \Rightarrow x \in I.
\]

A non-empty subset I of G is called an implicative ideal if it satisfies \((I_1)\) and \((I_2)\): \(x \ast I \subseteq I \) whenever \((x \ast (y \ast x)) \ast z \in I \) and \(z \in I \). An ideal I of a BCK-algebra G is called closed if for all \(x \in G \), \(0 \ast x \in I \). A subset \(Y \) of G is called a subalgebra of G if the constant 0 of G is in \(Y \), and \((Y; \ast, 0)\) itself forms a BCK-algebra.

III. TL-SUBALGEBRAS

Definition 3.1. Let G be a BCK-algebra, an L-subset \(\mu \) of G is said to be a TL-subalgebra of G if it satisfies:
(1) \(\mu(0) = 1 \);
(2) \(\mu(x \ast y) \geq \mu(x) \ast \mu(y) \) for all \(x, y \in G \).

In particular, a TL-subalgebra is simply called a L-subalgebra when \(T = \wedge \). The set of all TL-subalgebras of G and the set of all L-subalgebras of G are denoted by the symbols TL(G) and L(G), respectively.

Obviously, S is subalgebra of G if and only if characteristic function \(\chi_S \) of S is TL-subalgebra of G.

Proposition 3.2. Let G be a BCK-algebra, \(\mu \in L^G \). Then a necessary and sufficient condition for \(\mu \in L(G) \) is that every \(\mu_t(t \in L) \) is a subalgebra of G.

Proof. Let \(\mu \in L(G) \). Since \(\mu(0) = 1 \geq t \), we obtain \(0 \in \mu_t \). If \(x, y \in A_t \), then \(\mu(x) \geq t \) and \(\mu(y) \geq t \). It follows from Definition 3.1(2) that...
\[\mu(x \land y) \geq \mu(x) \land \mu(y) \geq t \land t = t. \]

Hence \(x \land y \in \mu \) and \(\mu \) is a subalgebra of \(G \).

On the other hand, for all \(t \in L \), \(\mu(t) \) is subalgebra of \(G \). Since \(0 \in \mu \), we obtain \(\mu(0) \geq t \) for all \(t \in L \). Hence \(\mu(0) = 1 \). For any \(x, y \in X \), we put
\[z = \mu(x) \land \mu(y), \]
then \(x, y \in \mu \) and hence \(x \land y \in \mu \). Thus
\[\mu(x \land y) \geq z = \mu(x) \land \mu(y). \]
Therefore \(\mu \in L(G) \).

Proposition 3.3. Let \(G \) be a BCK-algebra, \(\mu \in TL(G), i \in I \), where \(I \) is any nonempty index set, then
\[\land_{i \in I} \mu \in TL(G). \]

Definition 3.4. Let \(\mu, \nu \in L^S \). The \(T \)-product of \(\mu \) and \(\nu \) is defined by
\[(\mu \land \nu)(x, y) = \mu(x) \land \nu(y) \quad \text{for all } x, y \in S. \]

Proposition 3.5. Let \(G \) be a BCK-algebra. If \(\mu, \nu \in TL(G) \), then \(\mu \land \nu \in TL(G \times G) \).

Proof. For any \(x = (x_1, x_2), y = (y_1, y_2) \in G \times G \), we have
\[(\mu \land \nu)(0, 0) = \mu(0) \land \nu(0) = 1, \]
and
\[(\mu \land \nu)(x \land y) = (\mu \land \nu)(x_1 \land y_1, x_2 \land y_2) \]
\[= (\mu(x_1 \land y_1) \land \nu(x_2 \land y_2)) \]
\[\geq (\mu(x_1) \land \mu(y_1)) \land (\nu(x_2) \land \nu(y_2)) \]
\[= (\mu(x_1) \land \nu(x_2)) \land (\mu(y_1) \land \nu(y_2)) \]
\[= (\mu \land \nu)(x, y) \land (\mu \land \nu)(x, y). \]
Hence \(\mu \land \nu \in TL(G \times G) \).

Definition 3.6. Let \(f \) denote a mapping from \(G \) into \(Y \) and let \(\mu \in L^G \) and \(\nu \in L^L \). Two \(L \)-subsets \(\nu \in L^L \) and \(f^{-1}(\nu) \in L^G \) defined by
\[f(\mu)(y) = \{ \mu(x) \mid x \in X, f(x) = y \} \forall y \in Y \]
and
\[f^{-1}(\nu)(x) = \{ f(\mu) \mid \nu(x) \in G \} \forall x \in G, \]
are called the image of \(\mu \) under \(f \) and the pre-image(or inverse image) of \(\nu \) under \(f \), respectively.

\[f(\mu)(y) = \{ \mu(x) \mid x \in X, f(x) = y \} \forall y \in Y \]
and
\[f^{-1}(\nu)(x) = \{ f(\mu) \mid \nu(x) \in G \} \forall x \in G, \]
are called the image of \(\mu \) under \(f \) and the pre-image(or inverse image) of \(\nu \) under \(f \), respectively.

Proposition 3.7. Let \(f \) be a BCK-algebra homomorphism from the BCK-algebra \(G \) onto the BCK-algebra \(G' \).

(1) If \(\mu \in TL(G) \), then \(f(\mu) \in TL(G') \);

(2) If \(\nu \in TL(G') \), then \(f^{-1}(\nu) \in TL(G) \).

IV TL-IDEALS

Definition 4.1. Let \(G \) be a BCK-algebra, an \(L \)-subset \(\mu \) of \(G \) is said to be a TL-ideal of \(G \) if it satisfies
\[(F_1) \mu(0) = 1; \]
\[(F_2) \mu(x) \geq \mu(x \land y) \forall x, y \in G. \]

Definition 4.2. Let \(G \) be a BCK-algebra, an \(L \)-subset \(\mu \) of \(G \) is said to be a TL-implicative ideal of \(G \) if it satisfies \((F_3) \) and
\[(F_3) \mu(x) \geq \mu((x \land y) \land z) \forall x, y, z \in X. \]

In particular, a TL-ideal(implicative ideal) is simply called an \(L \)-ideal(implicative ideal) when \(T = \land \). The set of all TL-ideal(implicative ideal) of \(G \) and the set of all \(L \)-ideal(implicative ideal) of \(G \) are denoted by the symbols \(TL(G) \) (\(TL(G) \)) and \(LI(G) \) (\(LI(G) \)), respectively.

Obviously, \(G \) is an ideal(implicative ideal) of \(G \) if and only if characteristic function \(\chi \) of \(I \) is TL-ideal(implicative ideal) of \(G \).

Proposition 4.3. Let \(G \) be a BCK-algebra. If \(\mu \in TL(G) \), then \(\mu \) is order reversing.

Proof. For all \(x, y \in X \) , if \(x \leq y \) , then \(x \land y = 0 \). It follows from definition 4.1 that
\[\mu(x) \geq \mu(y) \forall x, y \in X. \]
Therefore \(\mu \) is order reversing.

Proposition 4.4. Let \(\mu \in TL(G) \). If the inequality \(x \land y \leq z \) holds in \(G \) , then \(\mu(x) \geq \mu(y) \forall x, y, z \in G \).

Corollary 4.5. Let \(G \) be a BCK-algebra, \(\mu \in L^G \). Then \(\mu \in LI(G) \) if and only if for any \(a_1, a_2, \ldots, a_n \in G \),
\[(\cdots (x \land a_1) \land \cdots \land a_n = 0 \]
implies
\[\mu(x) \geq \mu(a_1) \land \mu(a_2) \land \cdots \land \mu(a_n). \]

Proposition 4.6. Let \(G \) be a BCK-algebra, \(\mu \in L^G \). Then a necessary and sufficient condition for \(\mu \in LI(G) \) is that every \(\mu(t) \in L \) is an ideal of \(G \).

Proposition 4.7. Let \(G \) be a BCK-algebra, \(\mu \in L^G \). Then a necessary and sufficient condition for \(\mu \in LI(G) \) is that every \(\mu(t) \in L \) is an implicative ideal of \(G \).

Proof. Let \(\mu \in LI(G) \). Since \(\mu(0) = 1 \), we obtain \(0 \in \mu \). If \(x \land (y \land z) \in \mu \) and \(y \in \mu \), then
\[\mu(x \land (y \land z)) \geq \mu(0) \land \mu(z) \geq z. \]
It follows from definition 4.2 that
\[\mu(x) \geq \mu((x \land (y \land z)) \land \mu(z) \geq z. \]
Hence \(x \in \mu_i \) and \(\mu_i (t \in L) \) is an implicative ideal of \(G \).

On the other hand, for all \(t \in L \), \(\mu_i \) is an implicative ideal of \(G \). Since \(0 \in \mu_i \), we obtain \(\mu(0) \geq t \) for all \(t \in L \). Hence \(\mu(0) = 1 \). For any \(x, y, z \in G \), we put \(t = \mu(x \ast (y \ast x)) \ast z) \wedge \mu(z) \), then \((x \ast (y \ast x)) \ast z \in \mu_i \) and \(z \in \mu_i \). Since \(\mu_i \) is an implicative ideal of \(G \), we obtain \(x \in \mu_i \). Hence \(\mu(x) \geq t = \mu(x \ast (y \ast x)) \ast z) \wedge \mu(z) \), and \(\mu \in LI(G) \).

Definition 4.8. Let \(\mu \in TL(G) \). \(\mu \) is said to be a TL - closed ideal of \(G \) if for all \(x \in G \),
\[
\mu(0 \ast x) \geq \mu(x).
\]

Proposition 4.9. Let \(\mu \in TL(G) \). Then \(\mu \) is a TL - closed ideal of \(G \) if and only if \(\mu \in TL(\mu) \).

Proof. Let \(\mu \) is a TL - closed ideal of \(G \), for all \(x, y \in G \), we have
\[
\mu((x \ast y) \ast x) = \mu((x \ast x) \ast y) = (0 \ast y) \geq \mu(y)
\]
and
\[
\mu(x \ast y) \geq \mu((x \ast y) \ast x) \mu(x) \geq \mu(x) \mu(y).
\]
Hence \(\mu \in TL(G) \).

On the other hand, Let \(\mu \in TL(G) \), for all \(x \in G \), we have \(\mu(0 \ast x) \geq \mu(0) \mu(x) = \mu(x) \) Therefore \(\mu \) is a TL - closed ideal of \(G \).

Proposition 4.10. Let \(K \) is a subalgebra of the BCK-algebra \(G \). If \(\mu \) is a TL - closed ideal of \(G \), then \(K \wedge \mu \) is a TL - closed ideal of \(K \).

Proposition 4.11. Let \(G \) be a BCK-algebra. If \(\mu \in TL(G) \), then the set \(A = \{ x \in G \mid \mu(x) = 1 \} \) is an ideal of \(G \).

Proof. Let \(\mu \in TL(G) \). If \(x \ast y \in J \) and \(y \in J \), then \(\mu(x \ast y) = \mu(y) = 1 \). By definition 4.1 we get \(\mu(x) \geq \mu(x \ast y) \mu(y) = 1 \). Thus \(\mu(x) = 1 \) and \(x \in A \). It is clear \(0 \in A \). Hence \(A \) is an ideal of \(G \).

Proposition 4.12. Let \(G \) be a BCK-algebra. If \(\mu \in TL(G) \), then \(\mu \in TL(G) \).

Proof. Let \(\mu \in TL(G) \). Substituting \(x \) for \(y \) in \((F_2) \), then
\[
\mu(x) \geq \mu((x \ast (x \ast x)) \ast z) \mu(z) = \mu((x \ast 0) \ast z) \mu(z) = \mu(x \ast z) \mu(z).
\]
This shows that \(\mu \) satisfies \((F_2) \). Combining \((F_1), \mu \in TL(G) \).

Proposition 4.13. Let \(G \) be a BCK-algebra. Suppose that \(\mu \in LI(G) \). Then \(\mu \in LI(G) \) if and only if , for all \(x, y \in G \), \(\mu(x) \geq \mu((x \ast (y \ast x)) \ast 0) \wedge \mu(0) = \mu(x \ast (y \ast x)) \).

Proof. Let \(\mu \in LI(G) \). Then for all \(x, y \in G \), we have
\[
\mu(x) \geq \mu((x \ast (y \ast x)) \ast 0) \wedge \mu(0) = \mu(x \ast (y \ast x)) \).
\]
Conversely, Suppose \(\mu(x) \geq \mu((x \ast (y \ast x)) \ast 0) \wedge \mu(0) \) for all \(x, y \in G \). Since \(\mu \in LI(G) \), by Definition 3.1, we have
\[
\mu((x \ast (y \ast x)) \ast 0) \wedge \mu(0) = \mu((x \ast (y \ast x)) \ast 0) = \mu(x \ast (y \ast x)).
\]
Hence \(\mu(x) \geq \mu((x \ast (y \ast x)) \ast 0) \wedge \mu(0) \), and \(\mu(x) \geq \mu((x \ast (y \ast x)) \ast 0) \) for all \(x, y \in G \). Since \(\mu \in LI(G) \), by Definition 3.1, we have
\[
\mu((x \ast (y \ast x)) \ast 0) \wedge \mu(0) = \mu((x \ast (y \ast x)) \ast 0) = \mu(x \ast (y \ast x)).
\]
Thus \(\mu \) satisfies \((F_1) \). Obviously, \(\mu \) satisfies \((F_2) \).

Therefore, \(\mu \in LI(G) \).

REFERENCES