The Derivation and Use of a Scalable Model for Network Attack Identification and Path Prediction

Sanjeeb Nanda
School of Computer Science, University of Central Florida, Orlando, USA 32816-2362
sanjeeb@earthlink.net

Narsingh Deo
School of Computer Science, University of Central Florida, Orlando, USA 32816-2362
deo@cs.ucf.edu

Abstract – The rapid growth of the Internet has triggered an explosion in the number of applications that leverage its capabilities. Unfortunately, many are designed to burden or destroy the capabilities of their peers and the network’s infrastructure. Hence, considerable effort has been focused on detecting and predicting the security breaches they propagate. However, the enormity of the Internet poses a formidable challenge to analyzing such attacks using scalable models. Furthermore, the lack of complete information on network vulnerabilities makes forecasting the systems that may be exploited by such applications in the future very hard. This paper presents a technique for deriving a scalable model for representing network attacks, and its application to identify actual attacks using scalable models. The latter, and the corresponding systems are connected.

To address this challenge, attack graphs have been created using large sets of attack goals [7]. However, such attack graphs suffer from two major drawbacks. First, they have very large orders and second, they lack scalability. As a result, they cannot be used to model and visualize attacks on networks in practice. To alleviate the severity of this problem, mechanisms have been proposed to reduce the order of such graphs [1], and to represent them succinctly to facilitate their comprehension by users [4], [6].

Index Terms – Networks, exploits, attacks, defense, forecasting

I. INTRODUCTION

Network attacks continue to proliferate rapidly with increased risk to data security. Hence, detecting them expeditiously is vital. To do so, a suitable model such as a directed graph is needed to represent them. Existing formulations use vertices to represent a tuple of attributes [9], [10], [12]. Each tuple is comprised of a source system, target system, a vulnerability that exists on the target as a precondition, and the postcondition of an atomic attack from the source to the target using that vulnerability. Then, an arc exists from one exploit to another if and only if an attack can leverage the postcondition in the former to utilize the precondition in the latter, and the corresponding systems are connected.

To produce such attack graphs, the set of vulnerabilities at each system in the network is first obtained using scanners such as Nessus, Saint, ISS’ Internet Scanner and the CISCO Security Scanner. Then, a model checker such as NuSMV or Spin is applied to a graph on all possible exploits to generate every path that breaches an explicitly stated security condition that is stated as the goal. Finally, the result produced by the model checker is rendered using a visualization application such as GraphViz. However, such attack graphs suffer from two major drawbacks. First, they have very large orders and second, they lack scalability. As a result, they cannot be used to model and visualize attacks on networks in practice.
and from network services on other systems. Each service utilizes a unique port number for the transmission and reception of data from its peers.

Definition 3: A network service on a system s is said to be targeted by an exploit e if e attempts to utilize it to enhance its privileges on s. Since we want to determine how applications with vulnerabilities are exploited by their peers in a network, we restrict our discussion to network services only. For brevity, we shall hereafter refer to each simply as a service.

Definition 4: A service v on a system s is said to be compromised if an exploit that targets v succeeds in gaining privileges on s. We refer to s as the host of v.

Definition 5: A service v is assigned a *rank* using the set of permissions on a system hosting v that can be usurped by compromising v. Thus, given services v_1 and v_2, the rank of v_1 is greater than that of v_2, if the set of permissions usurped by compromising v_2 is a subset of the set of permissions usurped by compromising v_1. We denote the rank of a service v as $\text{rank}(v)$.

Definition 6: A honeypot is a system in a network that admits exploits that target it, and enables security experts to analyze the characteristics of such exploits to determine the behavior of the attackers that perpetrate them. In the following section we construct the network required to derive attack graphs from observed exploits.

Suppose that $R = \{r_1, r_2, \ldots, r_n\}$ and $S = \{s_1, s_2, \ldots, s_n\}$ are two sets of honeypots, where each $s_i \in S$ rejects any transmissions to it other than those from r_i in R, $1 \leq i \leq n$. This can be achieved, for instance, by confining each pair of systems $\{r_i, s_i\}$ to a unique domain, and rejecting all transmissions to s_i originating from outside its own domain. However, systems outside the domain of s_i can impersonate r_i by overwriting the valid 2-tuple comprised of the IP and media access control (MAC) addresses of r_i in the ARP cache of s_i with the spurious 2-tuple comprised of the IP address of r_i and the MAC address of the impersonator. To prevent this, the initially valid 2-tuple that associates the IP and MAC addresses of r_i is never allowed to be replaced.

Each system in R and S is actually a virtual machine that is simulated within a physical server using a tool such as VMware WorkStation. This enables a physical server to simulate multiple systems in a network, and thereby realize the large number of systems needed in practice to implement our proposed solution. For the sake of brevity, we shall henceforth refer to each virtual machine simply as a system.

Initially, the honeypots are initialized such that, no service on any system in R transmits data to any service on any system in S. Any transmission that is observed thereafter is scanned to determine if it is harmless. For example, a SYN packet that is typically used to initiate a TCP connection or to scan a port is judged to be harmless. On the other hand, an unfamiliar transmission is considered to be an exploit. In the latter case, the system in R from which the transmission originated is deemed to have been compromised.

Suppose that $V = \{v_1, v_2, \ldots, v_n\}$ is the set of services on which attack paths are to be found. Then, we initialize each system r_i in R to contain each service in $V \setminus \{v_i\}$, for $1 \leq i \leq n$. Figure 1 illustrates the aforementioned network. The rectangle with rounded corners shown within each system specifies the services on that system, and arc (r_i, s_i) indicates the exploits that are permitted to originate from r_i to target s_i, but not vice versa.

Legal liabilities inhibit honeypots from propagating attacks that are known to it. As a result, an attacker can identify a system s that has been ostensibly compromised as being a honeypot, if exploits designed by the attacker to originate from s do not occur. To ensure that attackers continue to launch exploits targeting systems in S from system in R, it is essential that they are not alerted to the fact that systems in S are honeypots. Hence, attacks are allowed to originate from systems in S. To this end, we allow systems in S to transmit only to those in another set, T say, where each system in T is protected with up-to-date internet security software.

III. DERIVING ATTACK GRAPHS

Definition 7: An attack graph is a pair $H = (V, A)$, where A is a set of arcs, and given v_i, v_j in V, (v_i, v_j) is in A if and only if v_j can be compromised to yield the postcondition necessary to exploit v_i. Then, v_j is called the predecessor of v_i. Next, we show how to derive such attack graphs.

Suppose that k systems in S are each targeted on port p by an instance of exploit e. Since, each service utilizes unique port numbers we can assume that the same service v has been targeted by e on each of the k systems. Now, an instance of e targeting a given system in S must originate from a unique system in R, since r_i in R is permitted to transmit to s_j in S only, for $1 \leq i \leq n$. Let p be the probability that a service on a system r in R has been compromised given that r is the source of an exploit e. Assuming that the probability of an internal attack on r, such as one perpetrated by a disgruntled
employee with administrative privileges on \(r \), is relatively low, we have \(p = 1 \). However, it is possible that a service has been compromised in \(r \) even when no exploit is observed to originate from it. For instance, an attacker may have compromised a service on \(r \) but not yet leveraged it to launch an exploit. So, let \(q \) be the probability that a service has been compromised in \(r \) that has not a source of \(e \). In our proposed network, each system in \(S \) can be targeted by an exploit launched from a unique system in \(R \) only. Hence, an attack that is keen to propagate itself to all systems in \(S \) is very likely to eventually use a compromised service \(u \) in each system in \(R \) to launch the corresponding exploit that required the attacker to compromise \(u \) in the first place. In other words, if a prolonged observation, \(r \) is not found to be a source of \(e \), it is very likely that no service has been compromised on \(r \) to launch \(e \). Thus, we have \((1 - q) \approx 1 \), and therefore, \(0 = q < p \approx 1 \).

Let \(C(n, k) \) denote the number of \(k \)-combinations of an \(n \)-set. Now, suppose that \(e \) originates from \(k \) given systems in \(R \). Since, there are \(C(n - k, m - k) \) \(m \)-sets of systems with every system in each of those \(m \)-sets containing each service common to those \(k \) systems, the probability \(p_k \) that a service common to \(k \) such systems has been compromised equals \(C(n - k, m - k)p^kq^{n-k} \).

Then, since \(m = n - 1 \) in our network, we have

\[
\frac{p_k}{p_{k-1}} = \frac{p(n-k+1)}{q(n-k)} = \frac{p(n-k)}{q(n-k+1)}
\]

Now, \(0 = q < p \approx 1 \). Hence \(\frac{p_k}{p_{k-1}} > 1 \), for \(1 \leq k < n \).

Thus, the probability that a service has been compromised is greater when the number of systems \(k \) containing it, which are the origins of a common exploit, is greater. Now consider the following cases.

Case 1 \(k = (n - 1) \)

The intersection of the sets of services in the \((n - 1)\) systems in \(R \) from which instances of \(e \) exploit the \((n - 1)\) systems in \(S \), must contain exactly one service, \(u \) say. By our preceding discussion, the likelihood of an attack having compromised \(u \) to yield the postcondition to exploit \(v \) must be high. Hence, we designate \(u \) as the predecessor of \(v \).

Case 2 \(k < (n - 1) \)

The intersection of the sets of services that are the origins of \(e \) has \((n - k)\) services, \(v_1, v_2, ..., v_{n-k} \) say, where \((n - k) > 1 \). Let \(U = \{v_1, v_2, ..., v_{n-k}\} \). In that case, each service in \(U \) may be a predecessor of \(v \) in the derived attack graph. However, if \(k \) is relatively small, and the number of services in \(V \) that admit the preconditions necessary for \(e \) to occur is small, then having all services in \(U \) as predecessors of \(v \) in an attack graph yields larger numbers of false positives. To avoid this, we can wait till the value of \(k \) is observed to be larger. In the meantime we may apply the following criteria to prune the number of services in \(U \) that are predecessors of \(v \).

(a) Suppose that \((n - 1)\) systems in \(R \) have service \(u \) have been observed to target the service \(v \) as well as the service \(v_i \) on systems in \(S_i \), where \(i \in \{1, 2, ..., k\} \). By our argument in Case 1, \(u \) must then be a predecessor of both \(v \) and \(v_i \). Then, \(v_i \) cannot be a predecessor of \(v \) for the following reason. If an attacker has already found a service \(u \) to compromise in order to exploit \(v \), then there is no benefit in compromising \(v_i \) as an intermediate step after compromising \(u \) in order to exploit \(v \). Hence we can eliminate \(v_i \) from the set of likely predecessors of \(v \).

(b) Suppose that \((n - 1)\) systems in \(R \) have service \(v_i \) are observed to be targeting the service \(w \) on systems in \(S_i \), where \(i \in \{1, 2, ..., k\} \), and \(rank(w) < rank(s) \). Then, by our argument in Case 1, \(v_i \) is a predecessor of service \(w \). Now an attacker that has compromised service \(v_i \), earlier to exploit \(w \) cannot be exploiting \(v \) later if \(rank(w) < rank(v) \). This is because exploits are designed by an attacker to usurp privileges with reasonable confidence of success. Hence, an attacker that intends to exploit a higher ranked service \(v \) will do so without exploiting a lower ranked service \(w \) first. Therefore, we can eliminate \(v_i \) from the set of likely predecessors of \(v \).

Case 3 \(k = n \)

Unfortunately, this implies that two or more services have been compromised to enable exploit \(e \) to be launched from each system in \(R \). However, such an occurrence is rare because of the following reason. In order to obtain the desired privileges on a system \(r \) that enables the launch of \(e \) from \(r \), an attacker has to first find a vulnerability admitted by a service on \(r \) that can be compromised to yield those privileges, and then write a program to achieve that. Neither task is trivial. Hence, upon finding a vulnerability in a service and the exploit necessary to compromise it, there is little reason for the attacker to find another service that can be compromised to enable the launch of \(e \), unless the existing mechanism to compromise the former service is rendered ineffective by network security. Hence, the occurrence of this case should be limited.

Using the inferences from Case 1 and Case 2, an attack graph \(H = (V, A) \) is constructed over time. A service in \(V \) that does not have a successor in \(H \) is then that which can be exploited by an attack to realize the postcondition satisfying its goal. Note that \(H \) may have multiple such services. Also, it may admit self-loops as well as arcs having the same tail and head. Now, an attack graph may be alternatively defined as follows.

Definition 8: An attack graph is a directed graph \(H = (V, A) \) where each vertex \(v \) in \(V \) is a vulnerability and each arc \((u, v)\) in \(A \) is an action \(a \) originating from a system having vulnerability \(u \) that has been exploited to yield the condition for \(a \) to exploit a system with vulnerability \(v \). A unique vertex \(v_f \) in \(V \) represents the end vulnerability that can be exploited by the attack to realize the postcondition that immediately satisfies its
goal. Thus an attack path is a unique path in H that contains v_i as its end.

Figure 2 illustrates an example of an attack graph described by Definition 8, where vulnerabilities v_1 and v_2 — each having in-degree 0 — are starting points for an attack, and whose goal is achieved by exploiting vulnerability v_6. In this graph, the sequences of vulnerabilities v_1, v_3, v_0, and v_2, v_4, v_6, and v_2, v_5, v_6 represent attack paths, where v^* denotes one or more occurrences of v. Each has vulnerability v_6 as its end, which can be exploited to yield the postcondition that satisfies the goal of the attack.

The graphs given by Definition 7 and Definition 8 are related for the following reason. A given vulnerability is unique to a service. Hence for each edge (u, v) in the graph given by Definition 8, there exists an edge between the services containing vulnerabilities u and v respectively in the graph given by Definition 7, and vice versa. Hence, the terms service and vulnerability are interchangeable. However, graph H given by Definition 7 admits multiple services without successors. For each such service s in H we can obtain the graph H_s that has s as its only vertex without a successor, by removing any vertex from H that is not an ancestor of s. In this manner we obtain multiple graphs from H that together contain all the attack paths in H. Each attack graph that we refer to hereafter shall be assumed to have exactly one vertex without a successor.

IV. THE CHALLENGE OF IDENTIFYING ATTACKS

However attack graphs only provide a roadmap of the attacks that can occur on systems by targeting the vulnerabilities they expose. In isolation, they cannot establish if an exploit corresponding to an intrusion detection system (IDS) alert truly constitutes an attack. There are various reasons that can make this determination difficult. Firstly, any network-based IDS incorporates rules that are designed to search the payload of network packets for signatures that portend threat and incorporates rules that are designed to search the payload of network packets for signatures that portend threat and detection difficult. Firstly, any network-based IDS generates an alert even when this worm attempts to exploit a Windows-based system. However, a typical IDS generates an alert even when this worm attempts to exploit a Windows-based system. However, such an exploit is guaranteed to have no ill effect on a Windows system nor serve as an intermediate step towards harming any peers, and is therefore defined to be irrelevant. Secondly, an event by itself may have ambiguous implications. For example, a TCP-SYN packet received by a host may be a legitimate request by a client to open a streaming connection to it, or may constitute a deliberate TCP-SYN flooding being carried out by that client using spoofed IP addresses to achieve denial of service. An alert generated in response to the occurrence of the former event, termed as a false positive, is undesirable since it drains network administration resources away from the investigation of meaningful events. While methods to identify false positives such as TCP-SYN flooding already exist, they are based on time-consuming heuristics that track the activity of malicious clients over periodic intervals of time [11]. Thirdly, an event may be incorrectly judged to be benign. For example, an ftp request that appears to originate from a trusted system within a firewall to a peer within it may be considered harmless, and therefore, ignored by the existing set of IDS rules. However, in reality the actual source may reside outside the firewall, and the system appearing to initiate the ftp request may have been compromised earlier to allow a port-forwarding program on it to masquerade as the source. The lack of an alert in such an instance is termed as a false negative and it poses a far greater danger to the network than false positive or irrelevant alerts. It is therefore vital to correlate alerts and events to meaningfully identify attacks.

A number of methods have been proposed to correlate alerts with attacks. One salient approach fuses together alerts that are generated within a finite window of time and possess common values for a specified set of attributes to form a meta-alert [13]. However, the drawback of this technique is that it can fuse together uncorrelated alerts when they have common attributes such as source and destination addresses, and can ignore related alerts that are spaced farther apart in time. Furthermore, it fuses meta-alerts denoting multi-step attacks in a similar manner with the same deficiencies. Another technique creates paths of events whose corresponding exploits in the attack graph have a distance less than a specific threshold to other exploits whose corresponding events lie on the same path [7]. The relevancy of a path to an attack is then obtained by first applying a moving average filter to the distances between the adjacent events in each path, and then calculating the ratio of the number of events in a given path to the sum of the filtered distances between all pairs of events in that path. The drawback of this scheme is that, it uses conventional non-aggregated attack graphs, which as stated earlier, have extremely large orders, which makes distance calculation between alerts computationally nontrivial.
Several methods have also been proposed to estimate the likelihood of an attack with specified goals. One scheme accomplishes this by modeling attacks using trees where each vertex represents a network/attacker state and each edge represents an exploit that leverages a non-unique vulnerability with a given probability [2]. The probability of the goal state is defined to be the sum of the probabilities of each non-intersecting path that has the vertex representing that goal state as an end, where the probability of each path is the product of the probabilities of the edges comprising it. However, it does not address the mechanism by which the probability of an exploit can be derived. Another technique computes the probabilities of the edges comprising it. However, it does not address the mechanism by which the probability of an exploit can be derived. Another technique computes the closure of the adjacency matrix A of the vertices of an attack graph, where A' shows the clusters of systems that are at risk from one another after k attack steps [5]. However, this indicates the reachability of an attack initiated from a given system to others in the network and not necessarily the path that is taken by it.

V. DESCRIPTION OF THE MODEL

We now describe how the given model of an attack graph can be used to determine the likelihood that an alert corresponds to a multi-step attack. Suppose an IDS generates an alert corresponding to an exploit originating from system s_2 targeting vulnerability v_1 at time t_1 on system s_1. Then, we determine if s_1 admits v_1. If not, we discard that alert as irrelevant, else we find a predecessor of v_1 in a chosen attack graph H, v_2 say, and determine if s_2 admits v_2. If true, we determine if an alert has been seen at some time $t_2 < t_1$ for an exploit targeting v_2 on s_2. Suppose this is true, and the system from which that exploit originates is s_3. Then we find a predecessor of v_2 in H, v_3 say, and determine if s_3 admits v_3. If true, we again determine if an alert has been seen at some time $t_3 < t_2$ for an exploit targeting v_3 on s_3. We continue backtracking in this manner until one of the following three cases occurs.

(a) Upon examining an alert at time t_{k-1} for an exploit from system s_k targeting vulnerability v_{k-1} on system s_{k-1}, we backtrack to the predecessor of v_{k-1} in the chosen attack graph, v_k say, and find that s_k admits v_k, but s_k has no predecessor.

(b) After inspecting the alert corresponding to an exploit from system s_{k+1} targeting vulnerability v_k on system s_k, we backtrack to the predecessor of vulnerability v_k in the chosen attack graph, v_{k+1} say, and find that v_{k+1} is not admitted by s_{k+1}. There are three possible scenarios that can cause this:

(b.1) s_{k+1} already admits the postcondition for an exploit to target v_k on s_k. This implies that the exploits targeting the sequence of vulnerabilities $v_{k+1}, v_{k-1}, ..., v_1$ represent a legitimate multi-step attack on system s_1.

(b.2) The chosen attack graph may not correspond to the attack that is ostensibly occurring.

(b.3) The attack may be exploiting an unknown vulnerability on s_{k+1} to exploit the sequence of vulnerabilities $v_{k+1}, v_{k-1}, ..., v_1$ thereafter.

(c) Upon examining an alert generated at time t_{k-1} for an exploit from system s_k targeting vulnerability v_{k-1} on system s_{k-1}, we backtrack to the predecessor of v_{k-1} in the chosen attack graph, v_k say, and find that s_k admits v_k. However, there is no alert originating from any system that targets v_k on s_k at time $t_k < t_{k-1}$.

VI. METHOD TO CORRELATE AN ALERT TO AN ATTACK

Using the previously described model of an attack graph, we can correlate an alert to an attack in the following manner. If (a) holds true and $v_1 = v_j$ in the attack graph being used, then we have found a complete sequence of exploits targeting each vulnerability in an attack path with v_j at its end. We refer to such a path as a complete attack path and its length as the complete attack length. It would then be intuitive to assume that such an occurrence indicates a legitimate multi-step attack that targets system s_j. In the event (b.2) holds true, we can substitute the attack graph being currently used with another that contains vulnerability v_1 and repeat the process of backtracking along the new graph to see if (a) or (b.1) holds. We may obtain such a graph after a number of substitutions. However, if no such attack graph is found, then we have to reconcile the matching of partial sequences of vulnerabilities $v_2, v_3, ..., v_j$ for each examined attack graph with the likelihood that it represents a real attack. It is intuitively appealing that the greater the length of the sequence $v_2, v_3, ..., v_j$ that is matched, the greater the likelihood that the alert targeting vulnerability v_j corresponds to a legitimate multi-step attack. We refer to the value of k in this matching attack subpath as the matching attack length, and its difference from the complete attack length as the remaining attack length. Furthermore, if $u_i, u_{i-1}, ..., u_1$ and $v_j, v_{j-1}, ..., v_1$ are the partial sequence of vulnerabilities that are matched by employing the attack graphs H and H' respectively say, with $i > j$, then it is intuitive to assume that H is the attack graph that best describes the perceived attack. Finally, (b.3) and (c) may be caused by the exploit on s_j being stealthy, or the IDS rules not being adequately comprehensive to detect such an exploit.

Algorithm 1 uses the previously described model to determine if an alert corresponding to an exploit constitutes an attack. Step 1 is executed once for a given network, while Step 2 is executed each time an alert is generated by an IDS thereafter. If the alert is correlated to an attack, Step 2 returns the sequence of 2-tuples comprised of the systems and their corresponding vulnerabilities that have been iteratively targeted by that attack. Such a sequence forms an attack instance as defined next.

Definition 9: Let $G = (S, E)$ be a network and $H = (V, A)$ be an attack graph. Given an attack path in H defined by the sequence of vulnerabilities $v_1, v_2, ..., v_k$, an attack instance is the sequence of tuples $(s_1, v_1), (s_2, v_2), ..., (s_k, v_k)$ where $i < k$ and systems $s_1, s_2, ..., s_k$ in S admit $v_1, v_2, ..., v_i$ respectively as a matching attack subpath.
Finally, the threshold τ is a suitable real value in $(1.0, 2.0)$.

Algorithm 1.

Correlate(vulnerability v, system s, time t, int matchLen)

if ($v \neq \text{null}$) and (s admits v) and (alert found for exploit targeting v on s at time $t_i < t$)

$e \leftarrow$ exploit at time t_i for which alert is found;

$t \leftarrow t_i$; \hspace{1cm} $P \leftarrow P + (v, s)$; \hspace{1cm} $s \leftarrow$ origin system of e;

matchLen \leftarrow matchLen $+ 1$;

if (v has predecessors in H_j)

for each predecessor u of v in H_j

{ Correlate(u, s, t, matchLen); }

else { Correlate(null, s, t, matchLen); }

else

$\text{corr} \leftarrow \frac{\text{matchLen}}{\text{matchLen} + d(w, w_f)} + \frac{1}{d(w, w_f) + 1}$;

if ($\text{corr} > \text{maxCorr}$)

$\text{maxCorr} \leftarrow \text{corr}; P_{\text{max}} \leftarrow P$;

}

Step 1

S = Systems in a subnet;

V = Set of vulnerabilities admitted by all systems in S;

n = Size of the set of attack goals admitted by V;

for attack goal $i \leftarrow 1$ to n generate attack graph H_i on V;

Step 2

$e \leftarrow$ exploit at time t for which alert is raised;

$s \leftarrow$ system targeted by e; \hspace{1cm} $\text{complete} \leftarrow$ false;

$w \leftarrow$ vulnerability targeted by e;

$P_{\text{max}} \leftarrow \emptyset$; $\text{maxCorr} \leftarrow 0$; \hspace{1cm} $i \leftarrow 1$; $t \leftarrow \infty$;

while ($i \leq n$)

$\{$

$d(w, w_f) \leftarrow$ distance of w to end vulnerability w_f in H_i;

$P \leftarrow \emptyset$; \hspace{1cm} Correlate(w, s, t, -1);

$\}$

if ($\text{maxCorr} > \tau$) return (P_{max}, i);

else return null;

Figure 3 illustrates an example of an attack instance comprised of the tuples (s_a, v_a), (s_b, v_b), (s_c, v_c), and (s_d, v_d). In this instance, systems s_a, s_b, s_c, s_d admit an attack path comprised of the attack path v_a, v_b, v_c, v_d. The correlation factor corr in Algorithm 1 is defined such that it is proportional to the ratio of the matching attack length to the complete attack length. At the same time, it is inversely proportional to the remaining attack length. This enables the correlation value of an attack to be proportional to the proximity of v_t to the vulnerability targeted by its most recently observed exploit. Finally, the threshold τ is a suitable real value in $(1.0, 2.0)$.

Execution of Step 2 of Algorithm 1 returns the tuple (P, i) if an attack instance P using the attack graph H_i is correlated to the investigated alert. Now, suppose that it returns (P_1, i_1) in response to an alert for an exploit e_1 at time t_1, and (P_2, i_2) in response to an alert for an exploit e_2 at time t_2, where $t_2 > t_1$. If $i_1 \neq i_2$ and P_1 is a subsequence of P_2, then P_2 must represent an attack that is different from P_1, since by Definition 1, each attack graph has a unique goal. On the other hand, if $i_1 = i_2$, then we obtain vindication of the algorithm’s earlier result that suggested an attack with the goal of the attack graph having index i_1.

The depths of attack graphs are generally small since the average length of a sequence of vulnerabilities exploited to achieve a desired security breach is small. Furthermore, the system that is examined for the predecessor of a given vulnerability v is specified by the alert for the exploit targeting v, and therefore, its discovery is achieved in constant time using suitable data structures such as a hash table. Thus, the order of Algorithm 1 is dominated by the number of attack graphs examined. If their number equals n, then the algorithm has order $O(n)$. Moreover, since the value of n is independent of the size of the network, the proposed model with its associated algorithm to identify attacks is very scalable.

Algorithm 1 identifies attack instances on a subnet when the vulnerabilities on all systems have been identified in Step 1. However, it does not identify the systems that are future targets of exploits by an identified attack. For example, suppose that $(s_1, v_1), (s_2, v_2), \ldots, (s_j, v_j)$ is an identified attack instance using the attack graph with the final goal vulnerability v_j where systems s_1, s_2, \ldots, s_j admit vulnerabilities v_1, v_2, \ldots, v_j respectively, and $v_j \neq v_i$. Then Algorithm 1 does not identify the systems that are likely to be targeted next by that attack to realize its goal of exploiting v_j. For instance, the attack may next target systems s_i and s_k that admit vulnerabilities v_i and v_k using exploits from systems s_{i-1} and s_{k-1} respectively, for some $1 \leq i < j$, as shown in Figure 5. Next, we describe the method to identify such systems.
VII. PREDICTING FUTURE TARGETS OF ATTACKS

To determine the systems that are likely to be targeted by an attack in the future utilizes the idea of matching the remaining attack length of an attack path in the direction of the goal. As described earlier, Algorithm 1 returns the index i of the attack graph corresponding to the matched attack instance. Now, if the remaining attack length is zero, then the system specified in the first tuple (v1, s1) of an attack instance is the system targeted by the attack. On the other hand, if the remaining attack length is nonzero, d say, then we iteratively find the sequence of systems s(k+1), s(k+2), ..., s(k+d) such that, system sj admits vulnerability vj, for k + 1 ≤ j ≤ k + d, vj+1 is a child of vj in the attack graph, vj+1 is the child of vj, and s(-d) = vj. However, in some iteration j, multiple systems may admit the vulnerability vj that is a descendant of vj. Therefore, to definitively identify the next system that is likely to be targeted, we determine that malware’s past preferences when selecting a system to exploit under such circumstances.

Consider a malware that has just compromised system s within a private network by exploiting vulnerability u on it, and whose eventual goal is to exploit vulnerability v. Furthermore, suppose that (u, v) is an arc in the attack graph with goal v. Since a malware propagates itself in the manner dictated by the flow of its coded logic, it can be expected to exhibit predictable traits in choosing the next system to exploit in the set of systems that all admit vulnerability v. For instance, that malware may be designed to next exploit, from s, the system that admits vulnerability v and belongs to the same private network as s. On the other hand, if s is a router, then that malware may be designed to immediately exploit another router that admits v. Similarly, it may choose the host having the lowest version of the operating system that admits vulnerability v. We now describe how such preferences are measured.

First, we define a system state as a tuple z = (v1, x1, x2, ..., xm) in V × X1 × X2 × ... × Xm of m + 1 independent variables that describes the state of a system, where V is the set of all vulnerabilities and Xi is the domain of characteristic xi, 1 ≤ i ≤ m, for some integer value m. For example, we may have X1 = \{a1, a12, a13\}, where a1 denotes a system having a private class C IP address of the form 192.168.1.b1, b2, with 0 ≤ b1, b2 ≤ 255; a12 represents a system having a private class B IP address of the form 172.1.b1, b2, b3, with 16 ≤ b1, b2, b3 ≤ 255; and a13 represents a system having a private class A IP address of the form 10.1.b1, b2, b3, with 0 ≤ b1, b2, b3 ≤ 255. Similarly, we may have X2 = \{a12, a22, ..., a26\} as the set of r unique combinations of operating systems and version numbers that indicate their respective service packs or patches. Also, we may have X3 = \{a31, a32\}, where a31 denotes a system that is a router and a32 denotes otherwise. In this manner, we identify x1, x2, ..., xm while ensuring that their respective domains do not omit any values that characterizes a system.

Since each variable comprising a system state has a finite domain, we must have a finite number of such states. Then, the conditional probability of an attack being in the system state zj when the preceding system state is zi, denoted as p(zj | zi), may be derived in the following manner. For each pair of system states z1 and zj we determine over all attack instances of the form (v1, s1), (v2, s2), ..., (v6, s6), k > 0, the number of occurrences cj where a system si is in state zj, and the number of occurrences ci,j where a system si is in state zj and system s(i−1) is in state zj, for i < k. Then, p(zj | zi) = ci,j/k. We may represent the probabilities of such pairs of states using a matrix P = (pi,j), where entry (i, j) equals p(zj | zi).

Now, given any system, its state must be a tuple in V × X1 × X2 × ... × Xm, since by construction, each domain is chosen such that each and every system is characterized by a unique value within it. As a result, a system’s state is also unique. Hence a given pair of systems r and s have a unique pair of corresponding states zr and zs respectively. Then the probability of an attack exploiting vulnerability v on s from r, using its prior exploitation of vulnerability u on r is given by the conditional probability p(zr | zs). For simplicity of notation we denote this simply as p(s, r).

Algorithm 2 utilizes the function FindTarget to perform a depth-first search for the targeted system. In each stage of recursion, it searches the branches from a system r to each system s in decreasing order of the conditional probability value p(s, r), where s admits the next vulnerability in the attack path towards v following that admitted by r. If a target is not found by proceeding down a branch, FindTarget backtracks to r and resumes its search on the branch having the next lower conditional probability value. It continues in this manner until a branch returns a target system, or all branches have been exhausted.

Algorithm 2.

FindTarget(system s, set of systems R, vulnerability u) {
 if (u = v) { return s; }
 else {
 R ← R − s; target ← null;
 for each successor v of u in attack graph Hv do {
 if p(v, s) > p(target) {
 target ← v;
 }
 }
 }
}
Let \(R_i = \{r_1, \ldots, r_i\} \) be the set of systems in \(R \) that admit \(v \), with \(p(r_i, v) \geq p(r_{i+1}, v), 1 \leq i < f; \)

if \((R_i \neq \emptyset \text{ and } \text{target} = \text{null})\)
\[
\begin{align*}
&\text{ } i \leftarrow 1; \\
&\text{ while } (\text{target} = \text{null} \text{ and } i < f) \text{ do } \{ \\
&\quad \text{ target } \leftarrow \text{FindTarget}(r_i, R_i, v); \\
&\quad i \leftarrow i + 1; \\
&\} \\
&\text{ return target; }
\end{align*}
\]

Execution Step
\(S = \) Systems in a subnet; \(R \leftarrow S; \)
Suppose Algorithm 1 returns \((P, i)\);
Let \(P = (v_1, s_1), (v_2, s_2), \ldots, (v_i, s_i)\);

for \(j \leftarrow 1 \) to \(k \)
\[
\begin{align*}
&\text{ } R \leftarrow R - s_j \text{, where } s_j \text{ is a member of a tuple in } P; \\
&\text{FindTarget}(s_j, R, v_j);
\end{align*}
\]

Figure 6. Algorithm to identify the target of an attack

VIII. CONCLUSION

Our model for representing attack graphs is highly scalable, and the method to derive them is relatively straightforward. Furthermore, the given algorithms that use them to identify attacks and predict their future targets are computationally efficient. Finally, the attack graphs are derived without explicitly scanning for vulnerabilities in the various services running on each system. As a result, the model can be used to detect attacks comprised of unfamiliar exploits targeting vulnerabilities that have yet to be identified.

REFERENCES

Sanjeeb Nanda graduated from the University of Central Florida in Orlando, Florida with a Ph.D. in Computer Science in 2007. His field of study includes graph theoretic modeling of RAID and network defense.

He is currently a Senior Research and Development Engineer with the Advanced Technologies Division of SDS International in Orlando, Florida. His professional interests encompass the design of systems for visualization, simulation and training.

Narsingh Deo graduated from Northwestern University in Evanston, Illinois with a Ph.D. in Electrical Engineering in 1965. His fields of specialization include the applications of graph theory, and parallel computing.

He is currently the Charles N. Millican Eminent Scholar’s Chair professor in Computer Science and the Director of the Center for Parallel Computation at the University of Central Florida.

Dr. Deo is a Fellow of the IEEE, ACM, and ICA, and a recipient of NASA’s Apollo Achievement Award.